Extensions 1→N→G→Q→1 with N=C2 and Q=C7×C22⋊C4

Direct product G=N×Q with N=C2 and Q=C7×C22⋊C4
dρLabelID
C14×C22⋊C4112C14xC2^2:C4224,150


Non-split extensions G=N.Q with N=C2 and Q=C7×C22⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(C7×C22⋊C4) = C7×C2.C42central extension (φ=1)224C2.1(C7xC2^2:C4)224,44
C2.2(C7×C22⋊C4) = C7×C22⋊C8central extension (φ=1)112C2.2(C7xC2^2:C4)224,47
C2.3(C7×C22⋊C4) = C7×C23⋊C4central stem extension (φ=1)564C2.3(C7xC2^2:C4)224,48
C2.4(C7×C22⋊C4) = C7×C4.D4central stem extension (φ=1)564C2.4(C7xC2^2:C4)224,49
C2.5(C7×C22⋊C4) = C7×C4.10D4central stem extension (φ=1)1124C2.5(C7xC2^2:C4)224,50
C2.6(C7×C22⋊C4) = C7×D4⋊C4central stem extension (φ=1)112C2.6(C7xC2^2:C4)224,51
C2.7(C7×C22⋊C4) = C7×Q8⋊C4central stem extension (φ=1)224C2.7(C7xC2^2:C4)224,52
C2.8(C7×C22⋊C4) = C7×C4≀C2central stem extension (φ=1)562C2.8(C7xC2^2:C4)224,53

׿
×
𝔽